PUBBLICITA

In che modo le misteriose regioni della "materia oscura" del genoma umano influenzano la nostra salute?

I Human Genoma Project revealed that ~1-2% of our genoma makes functional proteins while the role of the remaining 98-99% remains enigmatic. Researchers have tried to uncover the mysteries surrounding the same and this article throws light on our understanding of its role and implications for umano health and diseases.

From the time the Human Genoma Project (HGP) was completed in April 20031, it was thought that by knowing the entire sequence of umano genome which consists of 3 billion base pairs or ‘pair of letters’, genoma will be an open book using which researchers would be able to pin point exactly how a complex organism as a umano being works which will eventually lead to finding our predispositions to various kinds of diseases, enhance our understanding of why disease occurs and finding cure for them as well. However, the situation became very perplexed when the scientists were only able to decipher only a part of it (only ~1-2%) which makes functional proteins that decide our phenotypic existence. The role of 1-2% of the DNA to make functional proteins follows the central dogma of molecular biology which states that DNA is first copied to make RNA, especially mRNA by a process called transcription followed by production of protein by mRNA by translation. In the language of the molecular biologist, this 1-2% of the umano genoma codes for functional proteins. The remaining 98-99% is referred to as ‘junk DNA’ or ‘dark importanza’ which does not produce any of the functional proteins mentioned above and is carried as a ‘baggage’ every time a umano being is born. In order to understand the role of the remaining 98-99% of the genoma, ENCODE ( ENCyclopedia Of DNA Elements) project2 was launched in September 2003 by the National Human Genoma Research Institute (NHGRI).

The ENCODE project findings have revealed that majority of the dark importanza’’ comprises of noncoding DNA sequences that function as essential regulatory elements by turning genes on and off in different type of cells and at different points in time. The spatial and temporal actions of these regulatory sequences is still not completely clear, as some of these (regulatory elements) are located very far away from the gene they act upon while in other cases they may be close together.

The composition of some of the regions of umano genoma was known even before the launch of the Human Genoma Project in that ~8% of the umano genoma is derived from viral genomi embedded in our DNA as umano endogenous retroviruses (HERVs)3. These HERVs have been implicated in providing innate immunity to gli esseri umani by acting as regulatory elements for genes that control immune function. The functional significance of the this 8% was corroborated by the findings of the ENCODE project which suggested that majority of the ‘dark importanza functions as regulatory elements.

In addition to the ENCODE project findings, a vast amount of research data is available from the past two decades suggesting a plausible regulatory and developmental role for the ‘dark importanza’. Using Genoma-wide association studies (GWAS), it has been identified that majority of the noncoding regions of DNA are associated with common diseases and traits4 e le variazioni in queste regioni funzionano per regolare l'insorgenza e la gravità di un gran numero di malattie complesse come tumori, malattie cardiache, disturbi cerebrali, obesità, tra molte altre5,6. Gli studi GWAS hanno anche rivelato che la maggior parte di queste sequenze di DNA non codificanti nel genoma vengono trascritte (convertite in RNA dal DNA ma non tradotte) in RNA non codificanti e la perturbazione della loro regolazione porta a effetti differenziali che causano malattie7. Ciò suggerisce la capacità degli RNA non codificanti di svolgere un ruolo regolatore nello sviluppo della malattia8.

Inoltre, parte della materia oscura rimane come DNA non codificante e funziona in modo regolatorio come potenziatori. Come suggerisce la parola, questi potenziatori funzionano migliorando (aumentando) l'espressione di alcune proteine ​​nella cellula. Ciò è stato dimostrato in un recente studio in cui gli effetti potenziatori di una regione non codificante del DNA rendono i pazienti suscettibili a complesse malattie autoimmuni e allergiche come la malattia infiammatoria intestinale.9,10, portando così all'identificazione di un nuovo potenziale bersaglio terapeutico per il trattamento delle malattie infiammatorie. I potenziatori della "materia oscura" sono stati implicati anche nello sviluppo del cervello, dove gli studi sui topi hanno dimostrato che l'eliminazione di queste regioni porta ad anomalie nello sviluppo del cervello11,12. Questi studi potrebbero aiutarci a comprendere meglio le complesse malattie neurologiche come l'Alzheimer e il Parkinson. È stato anche dimostrato che la "materia oscura" svolge un ruolo nello sviluppo dei tumori del sangue13 come la leucemia mieloide cronica (LMC) e la leucemia linfatica cronica (LLC).

Thus, ‘dark matter’ represents an important part of the umano genoma than previously realised and has directly influences umano Salute by playing a regulatory role in the development and onset of umano diseases as described above.

Does that mean that the entire ‘dark matter’ is either transcribed into non-coding RNAs or play an enhancer role as non-coding DNA by acting as regulatory elements associated with predisposition, onset and variations in the various diseases inflicting gli esseri umani? The studies performed till now show a strong preponderance for the same and more research in the coming years will help us exactly delineate the function of the entire ‘dark matter’, that will lead to identification of novel targets in the hope of finding cure to the debilitating diseases that inflict the human race.

***

Riferimenti:

1. “Human Genome Project Completion: Frequently Asked Questions”. National Human Genoma Research Institute (NHGRI). Available online at https://www.genome.gov/human-genome-project/Completion-FAQ Consultato il 17 maggio2020.

2. Smith D., 2017. Il misterioso 98%: gli scienziati cercano di far luce sul "genoma oscuro". Disponibile online su https://phys.org/news/2017-02-mysterious-scientists-dark-genome.html Consultato il 17 maggio 2020.

3. Soni R., 2020. Umani e virus: una breve storia della loro complessa relazione e implicazioni per COVID-19. Scientific European Inserito il 08 maggio 2020. Disponibile online su https://www.scientificeuropean.co.uk/humans-and-viruses-a-brief-history-of-their-complex-relationship-and-implications-for-COVID-19 Consultato il 18 maggio 2020.

4. Maurano MT, Humbert R, Rynes E, et al. Localizzazione sistematica della comune variazione associata alla malattia nel DNA regolatorio. Scienza. 2012 settembre 7;337(6099):1190-5. DOI: https://doi.org/10.1126/science.1222794

5. Un catalogo degli studi pubblicati sull'associazione a livello di genoma. http://www.genome.gov/gwastudies.

6. Hindorff LA, Sethupathy P, et al 2009. Potenziali implicazioni eziologiche e funzionali dei loci associativi dell'intero genoma per malattie e tratti umani. Proc Natl Acad Sci US A. 2009, 106: 9362-9367. DOI: https://doi.org/10.1073/pnas.0903103106

7. St. Laurent G, Vyatkin Y e Kapranov P. L'RNA della materia oscura illumina il puzzle degli studi di associazione sull'intero genoma. BMC Med 12, 97 (2014). DOI: https://doi.org/10.1186/1741-7015-12-97

8. Martin L, Chang HY. Scoprire il ruolo della "materia oscura" genomica nelle malattie umane. J Clin Invest. 2012;122 (5): 1589-1595. https://doi.org/10.1172/JCI60020

9. The Babraham Institute 2020. Scoprire come le regioni della "materia oscura" del genoma influenzano le malattie infiammatorie. Inserito il 13 maggio 2020. Disponibile online su https://www.babraham.ac.uk/news/2020/05/uncovering-how-dark-matter-regions-genome-affect-inflammatory-diseases Consultato il 14 maggio 2020.

10. Nasrallah, R., Imianowski, CJ, Bossini-Castillo, L. et al. 2020. Un potenziatore distale a rischio locus 11q13.5 promuove la soppressione della colite da parte delle cellule Treg. Natura (2020). DOI: https://doi.org/10.1038/s41586-020-2296-7

11. Dickel, DE et al. 2018. I potenziatori ultra conservati sono necessari per lo sviluppo normale. Cell 172, numero 3, P491-499.E15, 25 gennaio 2018. DOI: https://doi.org/10.1016/j.cell.2017.12.017

12. Il DNA della "materia oscura" influenza lo sviluppo del cervello DOI: https://doi.org/10.1038/d41586-018-00920-x

13. La materia oscura conta: discriminare i tumori del sangue sottili usando il DNA più oscuro DOI: https://doi.org/10.1371/journal.pcbi.1007332

***

Rajeev Soni
Rajeev Sonihttps://www.RajeevSoni.org/
Il dottor Rajeev Soni (ID ORCID: 0000-0001-7126-5864) ha un dottorato di ricerca. in Biotecnologie presso l'Università di Cambridge, Regno Unito e ha 25 anni di esperienza lavorando in tutto il mondo in vari istituti e multinazionali come The Scripps Research Institute, Novartis, Novozymes, Ranbaxy, Biocon, Biomerieux e come ricercatore principale con US Naval Research Lab nella scoperta di farmaci, nella diagnostica molecolare, nell'espressione proteica, nella produzione biologica e nello sviluppo del business.

Iscriviti alla nostra Newsletter

Per essere aggiornato con tutte le ultime notizie, offerte e annunci speciali.

Articoli più letti

Mars Rovers: due decenni di sbarco di Spirit e Opportunity sulla superficie di...

Due decenni fa, due rover su Marte, Spirit e Opportunity...

COVID-19, immunità e miele: recenti progressi nella comprensione delle proprietà medicinali del miele di Manuka

Le proprietà antivirali del miele di manuka sono dovute alla...

Spreco di cibo dovuto allo scarto prematuro: un sensore a basso costo per testare la freschezza

Gli scienziati hanno sviluppato un sensore poco costoso utilizzando la tecnologia PEGS...
- Annuncio pubblicitario -
94,471FanCome
47,678SeguaciSegui
1,772SeguaciSegui
30IscrittiSottoscrivi