PUBBLICITA

Un nuovo metodo che potrebbe aiutare a prevedere le scosse di assestamento del terremoto

Un nuovo approccio di intelligenza artificiale potrebbe aiutare a prevedere la posizione delle scosse di assestamento a seguito di un terremoto

An terremoto è un fenomeno causato dalla roccia sotterranea nel Terra la crosta si rompe improvvisamente attorno ad una linea di faglia geologica. Ciò provoca un rapido rilascio di energia che produce onde sismiche che poi fanno tremare il terreno e questa è la sensazione che proviamo durante un terremoto. Il punto in cui la roccia si rompe è chiamato fuoco del terremoto and place above it on ground is called ‘epicentre’. The energy released is measured as magnitude, a scale to describe how energetic was an earthquake. An earthquake of magnitude 2 is barely perceptible and can be recorded only by using sensitive specialized equipment, while terremoti of more than magnitude 8 can cause the ground to noticeably shake very hard. An earthquake is generally followed by many aftershocks occurring by a similar mechanism and which are equally devasting and many times their intensity and severity is similar to the original earthquake. Such post-quake tremors occur generally within the first hour or a day after the main terremoto. Forecasting spatial distribution of aftershocks is very challenging.

Scientists have formulated empirical laws to describe size and time of aftershocks but pinpointing their location is still a challenge. Researchers at Google and Harvard University have devised a new approach for assessing terremoti and forecasting location of aftershocks using artificial intelligence technology in their study published in Natura. Hanno utilizzato specificamente l'apprendimento automatico, un aspetto dell'intelligenza artificiale. Nell'approccio di apprendimento automatico, una macchina "impara" da un insieme di dati e dopo aver acquisito questa conoscenza è in grado di utilizzare queste informazioni per fare previsioni sui dati più recenti.

I ricercatori hanno prima analizzato un database di terremoti globali utilizzando algoritmi di deep learning. L'apprendimento profondo è un tipo avanzato di apprendimento automatico in cui le reti neurali cercano di imitare il processo di pensiero del cervello umano. Successivamente, miravano a essere in grado di previsione scosse di assestamento meglio di ipotesi casuali e cercare di risolvere il problema di "dove" si verificheranno le scosse di assestamento. Sono state utilizzate le osservazioni raccolte da più di 199 grandi terremoti in tutto il mondo, costituite da circa 131,000 coppie di scosse principali e scosse di assestamento. Queste informazioni sono state combinate con un modello basato sulla fisica che descrive come Terra would be strained and tense after an terremoto which will then trigger aftershocks. They created 5 kilometer-square grids within which system would check for an aftershock. The neural network would then form relationships between strains caused by main earthquake and the location of aftershocks. Once neural network system was well-trained in this manner, it was able to predict location of aftershocks accurately. The study was extremely challenging as it used complex real-world data of earthquakes. Researchers alternatively set up artificiale e tipi di terremoti "ideali" per creare previsioni e quindi esaminare le previsioni. Esaminando l'output della rete neurale, hanno cercato di analizzare quali diverse "quantità" possono controllare la previsione delle scosse di assestamento. Dopo aver effettuato confronti spaziali, i ricercatori sono giunti alla conclusione che un tipico modello di scossa di assestamento era fisicamente "interpretabile". Il team suggerisce che una quantità chiamata seconda variante della tensione da stress deviatorico, chiamata semplicemente J2, è la chiave. Questa quantità è altamente interpretabile ed è normalmente utilizzata nella metallurgia e in altri campi, ma non è mai stata utilizzata prima per lo studio dei terremoti.

Le scosse di assestamento dei terremoti causano ulteriori feriti, danneggiano le proprietà e ostacolano anche gli sforzi di salvataggio, quindi prevederli sarebbe salvavita per l’umanità. Le previsioni in tempo reale potrebbero non essere possibili in questo preciso momento poiché gli attuali modelli di intelligenza artificiale possono gestire solo un particolare tipo di scossa di assestamento e una semplice linea di faglia geologica. Questo è importante perché le linee di faglia geologiche hanno geometrie diverse in diverse posizioni geografiche sul territorio pianeta. Pertanto, potrebbe non essere attualmente applicabile a diversi tipi di terremoti in tutto il mondo. Tuttavia, la tecnologia dell’intelligenza artificiale sembra adatta ai terremoti a causa del numero di variabili che devono essere prese in considerazione durante lo studio, ad esempio la forza dello shock, la posizione delle placche tettoniche, ecc.

Le reti neurali sono progettate per migliorare nel tempo, ovvero più dati vengono inseriti in un sistema, più apprendimento avviene e il sistema migliora costantemente. In futuro un tale sistema potrebbe essere parte integrante dei sistemi di previsione utilizzati dai sismologi. I pianificatori potrebbero anche attuare misure di emergenza basate sulla conoscenza del comportamento dei terremoti. Il team vuole utilizzare la tecnologia dell'intelligenza artificiale per prevedere la magnitudo dei terremoti.

***

{Puoi leggere il documento di ricerca originale facendo clic sul collegamento DOI indicato di seguito nell'elenco delle fonti citate}

Fonte (s)

DeVries PMR et al. 2018. Apprendimento approfondito dei modelli di scosse di assestamento a seguito di grandi terremoti. Natura560 (7720).
https://doi.org/10.1038/s41586-018-0438-y

***

Squadra SCIEU
Squadra SCIEUhttps://www.ScientificEuropean.co.uk
Scientific European® | SCIEU.com | Progressi significativi della scienza. Impatto sull'umanità. Menti ispiratrici.

Iscriviti alla nostra Newsletter

Per essere aggiornato con tutte le ultime notizie, offerte e annunci speciali.

Articoli più letti

Il risveglio del cervello dei maiali dopo la morte: un centimetro più vicino all'immortalità

Gli scienziati hanno rianimato il cervello dei maiali quattro ore dopo il suo...

COVID-19: uso dell'ossigenoterapia iperbarica (HBOT) nel trattamento dei casi gravi

La pandemia di COVID-19 ha causato un forte impatto economico a tutti...

Inflammasoma NLRP3: un nuovo bersaglio farmacologico per il trattamento di pazienti gravemente malati di COVID-19

Diversi studi indicano che l'attivazione dell'inflammasoma NLRP3 è...
- Annuncio pubblicitario -
94,476FanCome
47,680SeguaciSegui
1,772SeguaciSegui
30IscrittiSottoscrivi