PUBBLICITA

Il DNA come mezzo per memorizzare vasti dati informatici: una realtà molto presto?

A breakthrough study takes significant step forward in the quest to develop a DNA-based storage system for digital data.

Digitale dati sta crescendo a un ritmo esponenziale oggi a causa della nostra dipendenza dai gadget e richiede una solida archiviazione a lungo termine. L'archiviazione dei dati sta lentamente diventando difficile perché l'attuale tecnologia digitale non è in grado di fornire una soluzione. Un esempio è che negli ultimi due anni sono stati creati più dati digitali che in tutta la storia dei computer, infatti vengono creati 2.5 quintilioni di byte {1 quintilione di byte = 2,500,000 Terabyte (TB) = 2,500,000,000 Gigabyte (GB)} di dati ogni giorno nel mondo. Ciò include dati sui siti di social network, transazioni bancarie online, registri di aziende e organizzazioni, dati da satelliti, sorveglianza, ricerca, sviluppo, ecc. Questi dati sono enormi e non strutturati. Pertanto, ora è una grande sfida affrontare enormi requisiti di archiviazione per i dati e la sua crescita esponenziale, in particolare per le organizzazioni e le aziende che richiedono un solido storage a lungo termine.

Le opzioni attualmente disponibili sono disco rigido, dischi ottici (CD), memory stick, unità flash e l'unità a nastro più avanzata o dischi BluRay ottici che memorizzano all'incirca fino a 10 Terabyte (TB) di dati. Tali dispositivi di memorizzazione, pur essendo comunemente utilizzati, presentano numerosi inconvenienti. In primo luogo, hanno una durata di conservazione medio-bassa e devono essere conservati in condizioni di temperatura e umidità ideali per poter durare molti decenni e quindi richiedono spazi fisici di stoccaggio appositamente progettati. Quasi tutti questi consumano molta energia, sono ingombranti e poco pratici e possono danneggiarsi in una semplice caduta. Alcuni di questi sono molto costosi, sono spesso afflitti da errori di dati e quindi non sono abbastanza robusti. Un'opzione che è stata universalmente accettata dall'organizzazione è chiamata cloud computing, un accordo in cui un'azienda assume fondamentalmente un server "esterno" per gestire tutti i suoi requisiti IT e di archiviazione dei dati, denominato "cloud". Uno dei principali svantaggi del cloud computing sono i problemi di sicurezza e privacy e la vulnerabilità agli attacchi degli hacker. Ci sono anche altri problemi come costi elevati, controllo limitato da parte dell'organizzazione madre e dipendenza dalla piattaforma. Il cloud computing è ancora considerato una buona alternativa per l'archiviazione a lungo termine. Tuttavia, sembra che le informazioni digitali generate in tutto il mondo stiano sicuramente superando la nostra capacità di archiviarle e sono necessarie soluzioni ancora più solide per far fronte a questo diluvio di dati fornendo allo stesso tempo scalabilità per tenere conto anche delle future esigenze di archiviazione.

Il DNA può aiutare nell'archiviazione dei computer?

Il nostro DNA (Deoxyribonucleic acid) is being considered as an exciting alternative medium for digital data storage. DNA is the self-replicating material present in nearly all living organisms and is what constitutes our genetic information. An artificial or synthetic DNA is a durable material which can be made using commercially available oligonucleotide synthesis machines. The primary benefit of DNA is its longevity as a DNA lasts 1000 times longer than silicon (silicon-chip – the material used for building computer). Sorprendentemente, solo un singolo millimetro cubo di DNA can hold a quintillion of bytes of data! DNA is also an ultracompact material which never degrades and can be stored in a cool, dry place for hundreds of centuries. The idea of using DNA for storage has been around for a long time way back to 1994. The main reason is the similar fashion in which information is being stored in a computer and in our DNA – since both store the blueprints of information. A computer stores all data as 0s and 1s and DNA stores all data of a living organism using the four bases – thymine (T), guanine (G), adenine (A) and cytosine (C). Therefore, DNA could be called a standard storage device, just like a computer, if these bases can be represented as 0s (bases A and C) and 1s (bases T and G). DNA is tough and long-lasting, the simplest reflection being that our genetic code – the blueprint of all our information stored in DNA – is efficiently transmitted from one generation to next in a repeated manner. All software and hardware giants are keen on using synthetic DNA for storing vast amounts to achieve their goal of solving long-term archival of data. The idea is to first convert the computer code 0s and 1s into the DNA code (A, C, T, G), the converted DNA code is then used to produce synthetic strands of DNA which can then be put into cold storage. Whenever required, DNA strands can be removed from cold storage and their information decoded using DNA sequencing machine and DNA sequence is finally translated back to binary computer format of 1s and 0s to be read on the computer.

è stato mostrato1 that just a few grams of DNA can store quintillion byte of data and keep it intact for up to 2000 years. However, this simple understanding has faced some challenges. Firstly, it is quite expensive and also painfully slow to write data to DNA i.e. the actual conversion of 0s and 1s to the DNA bases (A, T, C, G). Secondly, once the data is “written” onto the DNA, it is challenging to find and retrieve files and requires a technique called DNA sequencing – process of determining the precise order of bases within a DNA molecule -after which the data is decoded back to 0s and 1s.

Un recente studio2 dagli scienziati di Microsoft Research e dell'Università di Washington hanno ottenuto un "accesso casuale" alla conservazione del DNA. L'aspetto dell'"accesso casuale" è molto importante perché significa che le informazioni possono essere trasferite da o verso un luogo (generalmente una memoria) in cui ogni posizione, indipendentemente da dove nella sequenza, è accessibile direttamente. Utilizzando questa tecnica di accesso casuale, i file possono essere recuperati dall'archiviazione del DNA in modo selettivo rispetto a prima, quando tale recupero richiedeva la necessità di sequenziare e decodificare un intero set di dati del DNA per trovare ed estrarre i pochi file desiderati. L'importanza dell'"accesso casuale" è ulteriormente elevata quando la quantità di dati aumenta e diventa enorme in quanto riduce la quantità di sequenziamento che deve essere eseguita. È la prima volta che l'accesso casuale è stato mostrato su una scala così ampia. I ricercatori hanno anche sviluppato un algoritmo per decodificare e ripristinare i dati in modo più efficiente con una maggiore tolleranza agli errori dei dati, rendendo anche la procedura di sequenziamento più veloce. In questo studio sono stati codificati più di 13 milioni di oligonucleotidi di DNA sintetico, dati di 200 MB costituiti da 35 file (contenenti video, audio, immagini e testo) di dimensioni comprese tra 29 KB e 44 MB. Questi file sono stati recuperati singolarmente senza errori. Inoltre, gli autori hanno ideato nuovi algoritmi che sono più robusti e tolleranti agli errori nella scrittura e nella lettura delle sequenze di DNA. Questo studio pubblicato in Nature Biotechnology in un importante progresso che mostra un sistema praticabile su larga scala per la conservazione e il recupero del DNA.

DNA storage system looks very appealing because it is having high data density, high stability and is easy to store but it obviously has many challenges before it can be universally adopted. Few factors are time and labour-intensive decoding of the DNA (the sequencing) and also synthesis of DNA. The technique requires more accuracy and broader coverage. Even though advances have been made in this area the exact format in which data will be stored in the long-term as DNA is still evolving. Microsoft has vowed to improve production of synthetic DNA and address the challenges to design a fully operational DNA sistema di stoccaggio entro il 2020.

***

{Puoi leggere il documento di ricerca originale facendo clic sul collegamento DOI indicato di seguito nell'elenco delle fonti citate}

Fonte (s)

1. Erlich Y e Zielinski D 2017. DNA Fountain consente un'architettura di archiviazione robusta ed efficiente. Scienza. 355(6328). https://doi.org/10.1126/science.aaj2038

2. Organick L et al. 2018. Accesso casuale all'archiviazione di dati del DNA su larga scala. Biotecnologie naturali. 36. https://doi.org/10.1038/nbt.4079

Squadra SCIEU
Squadra SCIEUhttps://www.ScientificEuropean.co.uk
Scientific European® | SCIEU.com | Progressi significativi della scienza. Impatto sull'umanità. Menti ispiratrici.

Iscriviti alla nostra Newsletter

Per essere aggiornato con tutte le ultime notizie, offerte e annunci speciali.

Articoli più letti

Il Nebra Sky Disk e la missione spaziale "Cosmic Kiss"

Il Nebra Sky Disk ha ispirato il logo di...

Vaccino booster Spikevax bivalente originale/Omicron: il primo vaccino bivalente COVID-19 riceve l'approvazione MHRA  

Spikevax Bivalent Original/Omicron Booster Vaccine, il primo vaccino bivalente COVID-19...
- Annuncio pubblicitario -
94,492FanCome
47,677SeguaciSegui
1,772SeguaciSegui
30IscrittiSottoscrivi